Resistor Network Answers

1.	(a)	pd = 3.6 V (1)	1	
		Example of answer; p.d. = $0.24 \text{ A} \times 15 \Omega = 3.6 \text{ V}$		
	(b)	Calculation of pd across the resistor (1) [6.0 - 3.6 = 2.4 V] Recall V = I _R (1) I_1 calculated from their pd / 4 Ω (1)		
		[correct answer is 0.60 A. Common ecf is $6V/4\Omega$ gives 1.5 A]	3	
		Example of answer: $I_1 = 2.4 \text{ V} / 4.0 \Omega = 0.6 \text{ A}$		
	(c)	Calculation of I_2 from $I_1 - 0.24$ [0.36 A] (1) [allow ecf of their I_1 . common value = 1.26 A] Substitution V = 3.6 V (1) R = 10 Ω (1)	3	
				[7]
_				
2.	(a)	<u>p.d. across 4 Ω resistor</u>		
		$1.5 (A) \times 4 (\Omega)$		
		$= 6 \mathrm{V}(1)$	1	
	(b)	<u>Resistance R_2</u>		
		Current through $R_2 = 0.5 \text{ A}$ (1) $R_2 = \frac{6 (\text{V})}{0.5(\text{A})}$		
		$R_2 = 12 \Omega(1)$	2	
		[allow ecf their pd across 4 Ω]		
	(c)	Resistance R ₁		
		p.d. across $R_1 = 12 - 6 - 4$		
		= 2 V (1)		
		Current through $R_1 = 2 A (1)$		
		$R_1 = \frac{2(V)}{2(A)} = 1\Omega \ (1)$		
		[allow ecf of pd from (a) if less than 12 V]		
		Alternative method		
		Parallel combination = 3Ω (1)		
		Circuit resistance = $12(V)/2$ (A) = 6Ω (1)		
		$R_1 = 6 - (3 + 2) = 1 \ \Omega \ (1)$	3	
		[allow ecf of pd from (a) and R from (b)]		
		-		[6]

3. <u>Charge</u>

Charge is the <u>current \times time</u> (1)	1
Potential difference	
Work done per unit charge [flowing] (1)	1
Energy	
9 V × 20 C (1)	
= 180 J (1)	2

4. The power supplies in the two circuits shown below are identical.

Write down the relationship between I_1 , I_2 and I which must hold if the combined resistance of the parallel pair, R_1 , and R_2 , is to equal R_T .

 $I=I_1+I_2$

(1 mark)

[4]

Hence derive the formula for the equivalent resistance of two resistors connected in parallel. **From Ohm's law:**

 $I = V/R_{T} \qquad I_{1} = V/R_{1} \qquad I_{2} = V/R_{2} \quad (1)$ $\therefore V/R_{T} = V/R_{1} + V/R_{2} \quad (1)$ and $1/R_{T} = 1/R_{1} + 1/R_{2} \quad (1)$

(3 marks)

Use your formula to show that the resistance between the terminals of a low-resistance component is hardly changed when a high-resistance voltmeter is connected in parallel with it.

If
$$R_v \gg R_{low}$$
 then $1/R_v \gg 1/R_{low}$ (1)

and $R_{\rm T} \approx R_{\rm low}$ (1)

Allow method based on numerical example

(2 marks) [Total 6 marks]

5.	<u>Resistance calculations</u> Evidence of 20 Ω for one arm (1) $\frac{1}{R} = \frac{1}{20} + \frac{1}{20}$ (1) $R = 10 \Omega$ (1)			3	
	Comment				
	This combination used instead of a single 10 Ω resistor [or value as before] (1)	r same			
	because a smaller current flows through each resistor/redu in any one resistor/average out errors in individual resistor	ice heating rs (1)		2	[5]
6.	<u>Circuit</u> Ammeters and two resistors in series (1) [1 mark circuit penalty for line through cell or resistor] <u>Cell e.m.f</u>			1	
	$E = 150 \times 10^{\circ} (A) \times 40 \times 10^{\circ} (\Omega) \text{ total } R (1)$ Powers of 10 (1) E = 6.0 (V)			2	
	New circuit				
	Voltmeter in parallel with $\underline{25}$ (k Ω) resistor (1) <u>Resistance of voltmeter</u>			1	
	(Total resistance) = $\frac{6(V)}{170 \times 10^{-6} (A)}$				
	$= (35.3 \text{ k}\Omega)$	(1))		
	(Resistance of Il combination) = $35 - 15 \text{ k}\Omega$ = (20 Ω) [e.c.f. their total resistance] $\frac{1}{20} = \frac{1}{25} + \frac{1}{R_V}$ $\frac{1}{20} = \frac{5 - 4}{1000000000000000000000000000000000000$	(1)	}		
	$\frac{R_V}{R_V} = \frac{100}{100}$				
	$R_V = 100 \text{ k}\Omega [108 \text{ k}\Omega \text{ if } R_T \text{ calculated correctly}]$	(1)	J		
	Alternative route 1:			3	
	p.d. across 15 k Ω = 2.55 V (\therefore p.d. across 11 combination = 3.45 V) resistance combination = 20 k Ω $\rightarrow R_V = 100 \text{ k}\Omega$	(1)(1)(1)			
	Alternative route 2:			2	[7]
	n d corresponded combination = 2.45 M	(1))	3	
	p.a. across parallel combination = 3.45 V <i>I</i> through 25 k Ω = 138 μ A $\rightarrow R_V = 100 \text{ k}\Omega$	(1) (1) (1)	}		

7. The circuit shows a battery of negligible internal resistance connected to three resistors.

Calculate current I_1 .

Voltage drop across 4Ω resistor = 3V (1)

$$H_2 = \frac{(9 \text{ V} - 3 \text{ V})}{24 \Omega} \quad (1)$$
$$H_1 = 0.25 \text{ A} \quad (1)$$

(3 marks)

Calculate resistance R

$$I_2 = 0.75 \text{ A} - 0.25 \text{ A} = 0.50 \text{ A}$$
 (1)
 $R = 6 \text{ V} / 0.50 \text{ A} = 12 \Omega$ (1)
 $R = 12 \Omega$

(2 marks) [Total 5 marks]

2

8. Diagram of torch circuit:

The lamp will light

Correct circuit

[Circuit showing one cell only is allowed one mark only unless the cell is labelled 4.5 V. If a resistor is included, allow first mark only unless it is clearly labelled in some way as an internal resistance.]

Voltage across each circuit component and current in lamp: Either 3.5 V/3 shown across the terminals of one cell or 3.5 V across all three cells

 $3.5\ V$ shown to be across the lamp

0.3 A flowing in the lamp [i.e. an isolated 0.3 A near the lamp does not score]

Calculation of internal resistance of one of the cells:

Lost volts = 4.5 V - 3.5 V or
$$1.5 V - \frac{3.5V}{3}$$

or total resistance = (4.5 V)/0.3 A) = 15 KΩ
Internal resistance of one cell = [(1.0 V)/(0.3 A)] ÷ 3
or [(0.33 V) (0.3 A)] or lamp resistance = (3.5 V) / (0.3 A)11.7 Ω
= 1.1 Ω or = (3.3Ω)/3 = 1.1 Ω 3

[Some of these latter marks can be read from the diagram if it is so labelled]

[8]

3

9. Proof:

$$V = V_1 + V_2$$
 $V = V_1 + V_2$ (1)

3

$$V = IR \qquad V_1 = IR_1 \qquad V_2 = IR_2 \qquad \div I \tag{1}$$

Substitute and cancel
$$I$$
 Sub using $R =$ (1)

Resistance of connecting lead is (very) small	(1)
So $I \times R_{(very) small} = (very) small p.d./e^{-1}s$ do little work so p.d. small/r small	(1)
compared with rest of the circuit so p.d. small	
	2

Circumstances where approximation might break down:	
If current is large OR resistance of rest of circuit is small	(1)
[Not high voltage/long lead/thin lead/high resistivity lead/hot lead]	
	1

Calculation:

Use of
$$R = \frac{\rho l}{A}$$
 with A attempted × sectional area (1)
Correct use of 16 (1)

Use of
$$V = IR$$
 (1)

[10]

No, because V is not proportional to I OR not straight line through origin /(1)10. only conducts above 0.5 V / resistance changes

Use of R = 0.74 / current from graph (1)

Ω [9.0 – 9.5 Ω] [Minimum 2 significant figures] (1)				
Calculation of p.d. across <i>R</i> [8.26]	Calculation of total resistance[109 – 115]		$E=\varSigma IR(1)$	
÷I	– diode resistance [9]	Correct substitutions	Correct substitutions (1)	
$103 \Omega [100 - 106] (1)$				
			3	

= 9.25 Ω [9.0 – 9.5 Ω] [Minimum 2 significant figures] (1)

[If not vertical line, 0/2]

[Otherwise 00]

[8]

1

11. Circuit diagram

Resistor with another variable resistor/potential divider/variable power pack (1)			
Ammeter reading current through resistor (1)			
Voltmeter in parallel with resistor (1)	3		
Graph labels			
Straight line – resistor Curve – lamp	1		
Potential difference			
At 0.5 A p.d.= $3.5 \text{ V} / 3.4 \text{ V} + 7.8 \text{ V} / \text{idea of adding p.d.}$ [for same current] (1)			
= 11.2 V/11.3 V (1)	2		
[Accept 11.0 –11.5 V]			
Resistance of lamp			
$\frac{3.5 \text{ V}}{0.5 \text{ A}} \text{ [OR their value of p.d. across lamp } \div 0.5 \text{ A] (1)}$			
$= 7.0 \Omega (1)$	2		
[e.c.f. their value]			

[8]

12. Show that

[In diagram or text}

- states p.d. same across each resistor (1)
- use of $I = I_1 + I_2 + I_3$ [symbols or words] (1)

•
$$\frac{V}{R} = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}$$
 (1) 3

[I = V / R stated somewhere gains one mark]

Networks		
First network:	$2.5(\Omega)$ (1)	
Second network:	25 (Ω) (1)	
Third network:	$10(\Omega)$ (1)	3
Meter readings		
Ammeter:	25 (mA) (1)	
Voltmeter V ₁ :	$25 \times 10 \text{ OR } 50 \times 5 \text{ [ignore powers of 10]}$ (1)	
= 0.25 V (1)		
Voltmeter V ₂ :	50×25 [ignore powers of 10] (1)	
= 1.25 V (1)		5

[Allow full e.c.f. for their resistance for 2nd network OR their V₁ answer]

13. <u>Readings on voltmeter</u>

Use of any resistor ratio OR attempt to find current in *either* circuit (1)

<u>At 950 kΩ</u>

$$V = \frac{10 \,\mathrm{k}\Omega \times 6 \,\mathrm{V}}{960 \,\mathrm{k}\Omega} = 0.063 \,\mathrm{V} \,(1)$$

<u>At 1.0 kΩ</u>

$$V = \left(\frac{10\,\mathrm{k}\Omega \times 6\,\mathrm{V}}{11\,\mathrm{k}\Omega}\right) = 5.45\,\mathrm{V}\,(1)$$

Use of circuit as lightmeter

Maximum resistance corresponds to low light intensity/resistance down as light intensity up (1)

 \therefore lightmeter or voltmeter reading will increase as light intensity increases [or reverse] (1)

```
[Can ecf for 2<sup>nd</sup> mark if resistance/light intensity incorrect and/or p.d. calculation wrong]
```

[5]

2

[11]